Anonymity in the Bitcoin Peer-to-Peer Network

Giulia Fanti

Joint work with: Shaileshh Bojja Venkatakrishnan, Surya Bakshi, Brad Denby,

Shruti Bhargava, Andrew Miller, Pramod Viswanath

Carnegie Mellon University

"Untraceable Bitcoin"

Teenagers using untraceable currency Bitcoin to buy dangerous drugs online

Fears have been raised as children as young as 14 are getting parcels of legal highs delivered to their home

This is false.

How can users be deanonymized?

Entire transaction histories can be compromised.

Meiklejohn et al., 2013

What about the peer-to-peer network?

Our Work

Analysis

Pr(detection)

Redesign

Dandelion

ACM Sigmetrics 2017, ACM Sigmetrics 2018

NIPS 2017

Model

Assumptions and Notation

Attacks on the Network Layer

What can go wrong?

What the eavesdropper can do about it

Summary of adversarial model

Analysis

How bad is the problem?

Flooding Protocols

Trickle (pre-2015)

Diffusion (post-2015)

Does diffusion provide stronger anonymity than trickle spreading?

d-regular trees

Anonymity Metric $P(detection | \boldsymbol{\tau}, G)$

Results: d-Regular Trees

	Trickle	Diffusion
First-Timestamp	$O\left(\frac{\log d}{d}\right)$	$O\left(\frac{\log d}{d}\right)$
Maximum-Likelihood	$\Omega(1)$	$\Omega(1)$

Results: Trees

Results: Bitcoin Graph

Number of Eavesdropper Connections

Diffusion does not have (significantly) better anonymity properties than trickle.

Redesign

Can we design a better network?

Metric for Anonymity

Transactions

Users Precision $\frac{1}{n}\sum_{v}\frac{1\{M(v' \text{ s tx}) = v\}}{\# \text{ tx mapped to } v}$

E[Recall] =
Probability of Detection

Mapping M

Goal:

Design a distributed flooding protocol that minimizes the maximum precision and recall achievable by a computationally-unbounded adversary.

Fundamental Limits

What are we looking for?

Asymmetry

What can we control?

Given a graph, how do we spread content?

What is the underlying graph topology?

How often does the graph change?

Why Dandelion spreading?

Theorem: Fundamental lower bound = p

fraction r of spies

number of nodes

Graph Topology: Line

Dynamicity: High

Change the anonymity graph frequently.

DANDELION Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?

Performance: Achievable Region

Why is DANDELION good?

Strong mixing properties.

Why not alternative solutions?

Connect through Tor

I2P Integration (e.g. Monero)

How practical is this?

Latency Overhead: Estimate

Information Propagation in the Bitcoin Network, Decker and Wattenhofer, 2013

Empirical Delay Distribution

Practical challenge: Black hole attack

Practical Challenges: Black hole attack

When you switch a route, what happens to transactions you've already sent?

A. Could resend sent transactions on the new route

B. This makes RBF challenging

Practical Challenges: Partial deployment

End story

• Complexity/robustness seems to be a barrier

Dandelion-Lite

Only make 1 hop in the stem phase!

txl

Dandelion-Lite: Privacy guarantees

- Similar guarantees to Dandelion when we assume that the adversary knows the graph
- Weaker guarantees when the adversary doesn't know the graph
- Still needed: simulations!!

Narayanan and Möser, 2017

Take-Home Messages

1) Bitcoin's P2P network has poor anonymity.

2) Moving from trickle to diffusion did not help.

3) DANDELION may be a lightweight solution for certain classes of adversaries.

https://github.com/dandelion-org/bitcoin BIP 156

Anonymity graph construction

Degree

Dealing with stronger adversaries

DANDELION vs. Tor, Crowds, etc.

1) Messages propagate over the same cycle graph

2) Anonymity graph changes dynamically.

3) No encryption required.

Learning the anonymity graph

Manipulating the anonymity graph

DANDELION++ Network Policy

Given a graph, how do we spread content?

What is the anonymity graph topology?

How often does the graph change?