
Chaincode Residency, June 19th 2019

Fair notice

● This presentation is about the Bitcoin Core wallet

● May* contain traces† of C++

*will †oodles

What are a wallet’s functions?

● Key management

● Transaction construction

● Persistence

Key management

● Identify owned transactions

● Generate new addresses

● Determine how to sign transactions

Transaction construction

● Parse addresses and turn them into txOuts

● Coin selection and fee estimation

● Sign inputs

● Advanced features (batching, RBF, CPFP, etc)

Persistence

● Store keys

● Store UTXOs (coins)

● Store transaction history

● Store metadata

○ Labels

○ Blockchain progress

○ etc

Agenda

● Glossary

● Initialization and interfaces

● Code management

● Key management

● Transaction construction

● Persistence

● Future directions

● CPubKey - a public key, used to verify signatures. A point on the secp256k1 curve.

● CKey - a private key, kept secret and used to sign data. In Bitcoin, private keys are scalars in the secp256k1

group.

● CKeyID - a key identifier, which is the RIPEMD160(SHA256(pubkey)). This is the hash used to create a P2PKH or

P2WPKH address.

● CTxDestination - a txout script template with a specific destination. Stored as a variant variable. Can be a:

○ CNoDestination: no destination set

○ CKeyID: TX_PUBKEYHASH destination (P2PKH)

○ CScriptID: TX_SCRIPTHASH destination (P2SH)

○ WitnessV0ScriptHash: TX_WITNESS_V0_SCRIPTHASH destination (P2WSH)

○ WitnessV0KeyHash: TX_WITNESS_V0_KEYHASH destination (P2WPKH)

○ WitnessUnknown: Unknown segwit version (for future segwit upgrades)

Initialization

● The wallet component is initialized through the WalletInitInterface

● For builds with wallet, the interface is overridden in src/wallet/init.cpp

● For --disable-wallet builds, a dummy interface is defined in src/dummywallet.cpp

● The initiation interface methods are called during node initialization

Loading

● WalletInit::Construct() adds a client interface for the wallet

● The node then tells the wallet to load/start/stop/etc through the ChainClient interface in

src/interfaces/wallet.cpp

● Most methods in that interface call through to functions in src/wallet/load.cpp

Node <-> Wallet Interface

● The node holds a WalletImpl interface to call functions on the wallet.

● The wallet holds a ChainImpl interface to call functions on the node.

● The node notifies the wallet about new transactions and blocks through the

CValidationInterface

Why?!

● There are no functional calls between the node and wallet

● Well-defined interface is easier to reason about

● Individual components can be tested in isolation

● Separate wallet into a different process

● Potential for different wallet implementations

ChainImpl

Node

Wallet

RPC

Notifications
HandlerImplWalletImpl

GUI

Code layout

● coinselection.cpp|h - Coin selection algorithm

● crytper.cpp|h - encrypting the wallet’s private keys

● [wallet]db.cpp|h - interface to wallet’s database for persistent storage

● init.cpp - initializing the wallet module

● load.cpp|h - loading/starting/stopping individual wallets

● rpc*.cpp|h - wallet’s RPC interface

● wallettool.cpp|h - standalone wallet tool binary

● wallet.cpp|h - EVERYTHING ELSE

● test/*

● When a transaction is added to the mempool or a block is connected, the wallet is notified

through the CValidationInterface

● The wallet needs to know if the transaction belongs to it. That happens in

SyncTransaction(), which calls AddToWalletIfInvolvingMe()

● The magic happens in IsMine()

● This takes the scriptPubKey, interprets it as a Destination type, and then checks whether

we have the key(s) to watch/spend the coin.

● This is overly complicated, inefficient due to pattern matching, not selective, and not

scalable.

Identifying owned transactions

● The Bitcoin Core wallet was originally a collection of unrelated private keys

● If a new address was required, a new private key would be generated

● Giving an address out and then restoring from a backup loses funds!

Generating Keys

● Introduced by Satoshi in 2010

● Cache (100) private keys before they’re needed

● When a new public key is needed (either for address or change), draw it from the keypool

and refresh the pool

● (Also allows an encrypted wallet to give out an address without unlocking)

Keypools

● A minimal HD wallet implementation was added to Bitcoin Core in 2016

● A new HD seed is set on first run or when upgrading the wallet

● Restoring old backups can no longer definitively lose funds (since all private keys can be

rederived)

● However, if many addresses were used since the backup, then the wallet may not know how

far ahead in the HD chain to look for its addresses

● The keypool essentially became an address look-ahead pool. It is used to implement a 'gap

limit'

HD Wallets

● For HD wallets, new keys are derived using the BIP32 HMAC derivation scheme

● For non-HD wallets, strong randomness is used to generate a new key

● In both cases, we test the new key by signing a message

● We save the key to the DB before using it

Generating keys (cont)

● Sending from the wallet happens through the RPC or GUI

○ sendtoaddress

○ sendmany

○ {create,fund,sign,send}rawtransaction

Constructing transactions

● The address is decoded into a CDestination

● Other parameters can be added for finer control (RBF, fees, etc)

● The wallet creates the transaction in CreateTransaction()

Constructing Transactions (cont)

● By default, coin selection is automatic

● The logic starts in CWallet:SelectCoins()

● By preference, we choose coins with more confirmations

● The actual logic for selecting which UTXOs to use is in coinselection.cpp, which implements

the branch and bound algorithm

● If that fails, we fall back to using the old KnapsackSolver

● Manual coin selection (Coin Control) is possible. See the CCoinControl structure

Coin Selection

● Signing is (almost) the last step in CreateTransaction()

● The CWallet is an implementation of the SigningProvider interface

● The signing logic for the SigningProvider is all in src/script/sign.cpp

Signing Inputs

● The wallet saves and broadcasts the wallet in CommitTransaction()

● The transaction is added to the mempool over the submitToMemoryPool() interface

method and relayed on the network in the relayTransaction() interface method

Sending Transactions

● Bitcoin Core wallet uses berkeley db for storage

● db.cpp|h is for the low-level interaction with bdb:

○ setting up environment

○ opening/closing database

○ batch writes

○ etc

● walletdb.cpp|h is for higher-level database read/write/erase operations.

● bdb is a key-value store:

○ The keys is a type (eg “tx”) followed by an identifier (eg txid)

○ The value is the serialized data

● Object serialization code is in wallet.h and walletdb.h

● Additional deserialization logic in walletdb.cpp

Persistence

● Descriptor-based wallets

● Hardware wallet integration

● Improve wallet<->node interface

● Process separation

● Different backend storage?

● Re-implementation??

Future Directions

Questions?
Comments?

