
P2P Design
in Bitcoin Core

Reflections of a code contributor

What is the P2P layer?

1. Peer management (who do we
connect to?)

2. Communication protocol/logic

2

1. Wallet users
2. Miners
3. Anyone who wants to validate

We assume that this software may be
run by everyone.

Who do we expect to use the software?

3

Goals of the P2P layer

● Stay in consensus:
○ Connectivity to the honest network
○ Be able to download blocks and transactions of

interest (mining, fee estimation, relay to miners, etc)
● But don’t sacrifice:

○ Privacy
○ Efficient resource usage
○ Robustness to broken or malicious peers

4

● Problems we try to solve
● Examples of design choices we’ve made to solve those

problems
● Some ideas for future work (definitely non-exhaustive!)

Disclaimer: There is a big design space here, and lots of potential ways to solve these problems!

What we’ll cover in this talk

5

● Need at least 1 honest peer

● Can’t force others to connect to us

○ New nodes have hardcoded peers and can use “DNS seeds”

○ Nodes gossip IP addresses of other nodes via “addr” messages.

■ (Data structure called “addrman” organizes info)

○ Use heuristics to find a diverse group of peers from addrman

○ Care must be taken so that “addr” message / processing can’t

be gamed, e.g. so that an attacker can take over the addrman!

○ Protect against Eclipse Attacks (Heilman, et al).

● Once we have peers, disconnect others that appear on an invalid

chain. (risky?)

Connectivity to the honest network

6

https://eprint.iacr.org/2015/263.pdf

● We want to download blocks and transactions that are of interest:

○ For txs, it’s everything that we would accept to our mempool.

○ For blocks, it’s everything that we need to be on the same tip

as everyone else.

● Generally, we request any transaction anyone announces to us (via

an “INV”), and then decide if want it. We request any block that

might help us advance our tip

Downloading blocks and transactions

7

Downloading blocks and transactions (2)

● Fundamental tradeoff between resource minimization
and robustness to peer misbehavior.

● Much of the complication of our design is because we
want to mitigate various DoS or privacy vulnerabilities.
(Some things like compact blocks are complicated
because they’re fancy.)

8

Considerations and tradeoffs

Lots of ways to achieve those two goals. But we’re constrained in multiple ways:

● Design complexity.
○ Simpler is usually better -- easier to implement/maintain/explain/analyze.

● Robustness to adversaries, misbehaving peers, network issues, etc.
○ Must eventually get all transactions, and ideally we should get all blocks

quickly and efficiently.
● Resource utilization - ideally we don’t waste too much

bandwidth/memory/cpu/disk
● Privacy - we should achieve all these goals without leaking unintended

information.

Need holistic reasoning when coming up with design. 9

Privacy goals

● Don’t let a node be fingerprinted by its

application behavior (nodes should be

identity-less).

● Don’t leak the originator of a transaction

(protect user privacy for everyone).

● Don’t collect information about users of our

software (no “phone-home” features).

10

DoS resistance: a grab-bag of problems

Non-exhaustive list of DoS issues that can arise:

● Fill up the disk attacks (can’t accept unnecessary blocks -- ties into validation
layer)

● Network bandwidth attacks (“free relay”)
● CPU/Memory/Disk DoS
● Network partition attacks (i.e. no access to blocks)
● Transaction-relay DoS (eg InvBlock)

11

Many DoS issues overlap with (or indistinguishable from) robustness / efficiency
issues.

● A DoS’er might be quick to announce a new block, but slow to deliver it (to slow
down block relay). But so could a node on a Raspberry Pi that is HB-announcing
compact blocks.

● Ideal behavior: never download data we don’t need, and only download data
once if we do need it, and get everything super fast.

In practice this is hard: peers might misbehave, go offline, etc. Can’t wait forever for a
peer to deliver data we need.

Efficiency and robustness

12

Make intentional DoS attacks costly, in proportion to the magnitude of the attack.

● Requiring proof-of-work or tx fees to be paid can make attacks scale up in cost.

For robustness and efficiency, we have to be careful to achieve our performance goals
without overly harming nodes on old hardware (the “unintentional” DoS-er), or even
running old software.

● Example: what happens if everyone disconnects all nodes relaying an invalid
block, after a soft-fork is deployed?

How do we think about all this?

13

Case study: (legacy) block relay

● Old Block relay: send INV when you learned of a new block (just block hash, not full

header).

● Nodes would immediately fetch a block upon receipt of block INV.

● When block arrives, process and store to disk as long as the block satisfied basic

context-free checks (e.g. valid proof-of-work, valid merkle tree)

● DoS vector: low-work blocks could be announced to a node and be used to fill up the

disk.

● Solution? Use proof-of-work as anti-DoS measure.

○ Require block header before deciding to download any blocks.

○ Announce blocks via header instead of using INV.

○ Only download blocks that lead to a more-work tip.

○ Don’t process unrequested blocks.

14

● Long time behavior: make 8 outbound connections, hope 1 is honest & connects
us to honest network

● Sometimes we might know if we’re at risk of being partitioned from honest
network
○ Receive an invalid block / block header → peer who gave it to us is bad

(disconnect?)
○ Peer stays on a less work chain than ours for an extended period of time →

peer is bad (disconnect?)
○ No new blocks for an extended time period → maybe we’re eclipsed by bad

peers?

Case study: connectivity to
honest network

15

Case study: Handling risks of
connectivity to honest network

16

● How might we handle risk of being partitioned? A few ideas:

○ General peer rotation (downside: adversary with a bunch of

nodes will eventually eclipse)

○ Limited peer rotation -- try new peer occasionally to see if

we learn something new

○ More outbound peers (tradeoff with resource utilization)

Case study: transaction relay (1)

● Long time behavior: peers send an INV for new transactions, nodes

request all such txs from those peers

● Want to be resource efficient, don’t download the same tx multiple

times

● Adversaries might like to know at which IP a tx first appeared on

the network

17

Case study: transaction relay (2)

● What are possible ways to hide the network graph, to prevent

attackers from deanonymizing?

○ Rapid peer rotation

○ Eliminate cross-peer optimizations

○ Recent proposal: separate the block and transaction

networks

● Also should look to ways to augment/replace poisson relay with

something that is less leaky

18

How to prevent eclipse attacks from
moderately well-funded adversaries?

Imagine that an attacker has X% of the
listening nodes on the network.
● What are the most effective attacks?
● How expensive to carry out such attacks?

Future work: reduce partitioning risk

19

● Basic problem: current transaction relay system scales badly
as more peers are added

● Send INV’s for every tx along every link of the network

● Adding more connectivity to the network makes Bitcoin’s
network more robust (e.g. to eclipse attacks), but at the cost
of more bandwidth

(Recent proposal, Erlay, to use a set reconciliation technique to
replace INVs)

Reducing bandwidth for tx relay

20

Block relay

21

Compact blocks (BIP 152) are awesome!

Yet many improvements are possible, such as:
● Maximize the likelihood of reconstruction with extra pool or

prefilled transactions (or protocol extension to do even better)
● Parallel fetching of compact blocks (so that we’re less dependent on

the original announcer of a block if they become slow to finish
relay)

● Parallel processing of network messages (so that we can respond
with a BLOCKTXN message even while busy validating a block)

“Package relay”

22

This is a problem that spans the P2P layer and the validation layer.

Mempool acceptance (validation) has some anti-DoS quirks:
● Uses tx feerate to prioritize what gets into the mempool
● Txs also can only be added to mempool if all unconfirmed parents are in

mempool (what would happen otherwise?)
● What if a very high-fee child tx depends on a very low-fee parent?

Tx “packages” are txs that have some kind of dependence relationship
(jargon of our code).

Improving this requires work at both the validation layer and the p2p layer.

Summary

23

● P2P design is result of considering trade offs across many different
goals/perspectives.

● Many design choices made as a result of firefighting

● Difficult to do wholesale rewrites of anything

● Lack systematic frameworks for measuring performance or
evaluating problems.

● Think adversarially!

