
Debugging Bitcoin
Fabian Jahr



Disclaimer

● This is a work of fiction. Names, characters, businesses, places, events, locales, and incidents are 
either the products of the author’s imagination or used in a fictitious manner. Any resemblance to 
actual persons, living or dead, or actual events is purely coincidental.



Welcome to Bitcoin



First issues
 

wat?



Let’s ask in the chat



Helpful senior dev is helpful

regtest/debug.log

std::out



Moving on to unit tests



That was kind of easy



What about using a debugger?

gdb or lldb on macOS

Start debugger with an executable

Set breakpoints

Run the executable from the debugger

Inspect variables, step through lines etc.



This is pretty cool!



Should not be too hard for functional tests...

Using Python

Logging

- self.log.debug()

Debugging

- import pdb; pdb.set_trace()

But what about debugging the C++ code?



But where is the executable?

Functional tests launch our bitcoind themselves using a temp folder as datadir

That means we can not simply start it ourselves

We need a gameplan!



Gameplan

1. Start the functional test directly (not 

using test_runner.py) and let them 

start the bitcoind process

2. Pause the functional tests with 

pdb.set_trace()
3. Find the running bitcoind process, 

attach to it using lldb and setting 

breakpoints

4. Then let the test continue (continue in 

pdb) and let it run into our lldb 

breakpoints

5. Optional: May want to remove 60s 

timeout



N/A



Major 🔑 to success: Context awareness 

https://emojipedia.org/key/


Debugging contexts

Test driver Bitcoind context

Manual - bitcoin-cli/rpc - Path: your own bitcoin path
- Log: ENV/debug.log
- Debug: run bitcoind with lldb

Unit tests - src/test/test_bitcoin - Path: /var/
- Log: to std::out with LibBoost
- Debug: Run test_bitcoin with 

LLDB

Functional 
tests

- test/functional/test_ru
nner.py (or the test directly)

- Log: self.log.print()
- Debug: pdb

- Path: /var/ with --no-cleanup
- Log: temporary debug.log with 

consolidation tool
- Debug: pdb + lldb



Things left out

Install ccache

Compiler flags

- Disable optimizations (-O0)

- Remove parts you don’t need, e.g. --without-gui for example

Segfault tools

- Core dumps
- Need to activate with ulimit -c unlimited and then run in same terminal session
- Find them in /cores/*
- Make sure to clean up afterwards

- valgrind
- Inspections, used similar to lldb



http://bit.ly/debugbitcoin
=> work in progress

=> help me with linux version!

Thank you and questions?


